The plasma membrane Ca2+ pump contains a site that interacts with its calmodulin-binding domain.
نویسندگان
چکیده
A synthetic, 28-residue peptide derived from the calmodulin-binding sequence of the plasma membrane Ca2+ pump (C28W) inhibits the ATPase activity of a calpain-produced, truncated fragment of the enzyme. The fragment, which has lost the calmodulin-binding domain, has a molecular mass of 124 kDa and is fully active in the absence of calmodulin. Replacement of Trp-8 in the peptide by an Ala decreases the overall inhibitory activity, while replacement with a Tyr increases it. However, at very low peptide concentrations the effect of Tyr replacement disappears. The synthetic peptide has been made photoactivatable by replacing Phe in position 9 with a synthetic phenylalanine analogue containing a diazirine group and was radioactively labeled by coupling a [3H]acetyl function to its N terminus. After cross-linking with the derivatized peptide, the 124-kDa fragment has been proteolyzed with either Lys-C, Asp-N, or V8 proteases, and the fragment(s) have been separated. Partial sequencing of the cross-linked, radioactive peptides has identified a site of the pump located C terminally to the phosphoenzyme-forming aspartic acid, spanning residues 537-544 of the hPMCA4 isoform of the enzyme. It is concluded that this sequence is part of a site which binds the calmodulin-binding domain of the pump.
منابع مشابه
The plant plasma membrane Ca2+ pump ACA8 contains overlapping as well as physically separated autoinhibitory and calmodulin-binding domains.
In plant Ca(2+) pumps belonging to the P(2B) subfamily of P-type ATPases, the N-terminal cytoplasmic domain is responsible for pump autoinhibition. Binding of calmodulin (CaM) to this region results in pump activation but the structural basis for CaM activation is still not clear. All residues in a putative CaM-binding domain (Arg(43) to Lys(68)) were mutagenized and the resulting recombinant p...
متن کاملA novel calmodulin-regulated Ca2+-ATPase (ACA2) from Arabidopsis with an N-terminal autoinhibitory domain.
To study transporters involved in regulating intracellular Ca2+, we isolated a full-length cDNA encoding a Ca2+-ATPase from a model plant, Arabidopsis, and named it ACA2 (Arabidopsis Ca2+-ATPase, isoform 2). ACA2p is most similar to a "plasma membrane-type" Ca2+-ATPase, but is smaller (110 kDa), contains a unique N-terminal domain, and is missing a long C-terminal calmodulin-binding regulatory ...
متن کاملFunctional consequences of relocating the C-terminal calmodulin-binding autoinhibitory domains of the plasma membrane Ca2+ pump near the N-terminus.
A mutant of the plasma membrane Ca2+ pump (PMCA) called (nCI)hPMCA4b(ct120), in which the C-terminal regulatory segment including the calmodulin-binding autoinhibitory domains C and I had been relocated near the N-terminus, has been expressed in COS-1 cells. The measurements of Ca2+ transport in microsomal preparations showed that the rearranged enzyme was functional. The activity of the (nCI)h...
متن کاملThe C-terminal domain of the plasma membrane Ca2+ pump contains three high affinity Ca2+ binding sites.
The C-terminal portion of the plasma membrane Ca(2+)-ATPase contains different regulatory domains. A recombinant C-terminal fragment of the human plasma membrane Ca(2+)-ATPase 1b isoform (E1079-P1180) was used to study the role of two acidic amino acid stretches located on either side of the calmodulin binding domain, corresponding to synthetic peptides A18 (Vorherr, T., James, P., Krebs, J., E...
متن کاملInteraction of the plasma membrane Ca2+ pump 4b/CI with the Ca2+/calmodulin-dependent membrane-associated kinase CASK.
Spatial and temporal regulation of intracellular Ca(2+) is a key event in many signaling pathways. Plasma membrane Ca(2+)-ATPases (PMCAs) are major regulators of Ca(2+) homeostasis and bind to PDZ (PSD-95/Dlg/ZO-1) domains via their C termini. Various membrane-associated guanylate kinase family members have been identified as interaction partners of PMCAs. In particular, SAP90/PSD95, PSD93/chap...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 266 5 شماره
صفحات -
تاریخ انتشار 1991